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Clearning Phased Array Radar

AFOSR Grant F49620-96-1-0240, Final Report

AFOSR Program Manager: Jon Sjogren

Principal Investigator: Andreas Weigend
Until December 1996: Assistant Professor, Computer Science
Department, University of Colorado at Boulder
Since January 1997: Associate Professor, Information
Systems Department, Leonard N. Stern School of Bu51ness,
New York Unlvers1ty

1. Objective
Observations, such as phased array radar data, contain
noise, usually from several sources. The essence of
modeling, and subsequent inference, is to extract the
signal. The objective of this grant was to understand the
strengths and limitation of a new algorithm called
"clearning" (the combination of learning the model and
cleaning the data), and to apply it to phased array radar
data.

2. Results

The proposal was written with a three—year time horizon.
Before applylng the algorithm to phased array radar data,
and comparing it to competing algorithms, the first goal
was to understand what the algorithm can do, and what it
cannot do. This was best done by relating it to the
important research question: to what degree can we infer
hidden states from observed data?

The key result is: hidden states can be inferred
successfully for time series data. Time series data have .
the major advantage that adjacent patterns are indeed
related to each other. This is not the case in standard
non-time-series pattern recognltlon problems.

The first progress report emphasized the important of
constraints between the input variables to exist for

. clearning to work. In particular, it emphasized that the
first steps of the project thus are to clarify what might

- be done, and what cannot be done in principle, as well as
to relate clearnlng to source separation, and, in the case
of time series, to state space modeling and Kalman
filtering. This has been achieved: The following describes
the research that my collaborators and I carried out in the
last year in the context of finding ("hidden") variables
(continuous, as in clearning, or discrete) that are a less
noisy characterization of the systems than a snapshot - of
the raw observed signal.

Shi and Weigend [1] explore discrete hidden states, and
show their usefulness for characterizing and predicting
very noisy time series. This is an extension of hidden
Markov models, very popular in the speech community, but
hardly known in the prediction communlty The key idea is:
if there are different dynamics in different regimes of the
time series, and these regimes last for a while, then
rather than averaging over the submodels, a more




appropriate model is obtained by estimating both the
regime, and the parameters of the sub-models.

The MATLAB code we wrote for these experiments is available
upon request.

The power of hidden Markov models crucially depend on the
time series nature of the problem. Clearning, in contrast,
as well as the "gated experts" architecture (Weigend,
Mangeas, and Srivastava 1996) do not exploit the time
series structure and are thus both more broadly applicable
and weaker. '

Timmer and Weigend [2] show the power of modeling dynamic
noise and observational noise separately. I had mentioned
previously (Section 2.1 of the progress report) that noisy
inputs can lead to an underestimation of the parameters.
This paper explores this point further and shows that a
case where the decay times of shocks are underestimated by
two orders of magnitude when the distinction between
observational and dynamic noise is ignored. While ‘state
space modeling is a powerful method, it crucially depends
on the time series nature of the problem.

Another method, suggested in the progress report, is blind
source separation, related to independent component
analysis (ICA). In collaboration with Dr. Andrew Back I
started to explore the usefulness of independent component
analysis (ICA, also called blind source separation) to very
noisy data, Japanese stock return, in comparison to
principal component analysis (PCA). Preliminary results
indicate that estimated independent components (ICs, also
called "sources") fall into two distinct .categories: (1) a

" small number of large transient shocks (with skewed

distributions), and (2) approximately Gaussian random
noise.

Finally, the revision of a third paper by LeBaron and
Weigend (3] focusing on focuses on performance evaluation
by re-sampling, profited from the distinction of different
noise sources: the method described in [2] was applied to
that time series of daily NYSE volume.

In summary, while these papers received attention at
several conferences and workshops, and have been accepted
by major journals, the answer to the first stage of the
clearning question has, unfortunately, been largely
negative. I currently do not see a way to extend the
algorithm to non-time-series data as I had hoped: there
simply is not enough information for the degrees of freedom
of both moving the data and the model.

3. Publications

[1] Shanming SHI and Andreas S. WEIGEND "Taklng Time
Seriously: Hidden Markov Experts Applied to Financial
Engineering." 1In: Proceedings of the IEEE/IAFE 1997
Conference on Computational Intelligence for Financial
Engineering (CIFEr, New York, March 1997), pp. 244--252.
Piscataway, NJ: IEEE Service Center.

Ty



a4

http://www.stern.nyu.edu/~aweigend/Research/Papers/HiddenMa
rkov/

Abstract--Most traditional time series models are global
models based on local time information: they assume that
the state can be fully and locally (in time) characterized
with a finite embedding space. Prediction then amounts to
simple regression. Unfortunately, there are many situations
in which simple regression is not sufficient to model the
temporal structure in a time series. We here introduce an
architecture that we call Hidden Markov Experts. It is
based on Hidden Markov Models used in speech recognition
research. By introducing the concept of hidden states,
Hidden Markov experts model time dependency of time series
explicitly as a first-order Markov model with transitions
between these hidden states. Within each state, local
models are applied to estimate the probability density,
which can be linear or nonlinear depending on the
situation. This paper first discusses the statistical
framework and the learning algorithm of Hidden Markov
experts, then applies them to daily S&P500 data and to high
frequency currency exchange rate data. The Hidden Markov
Experts have better profit than the linear and nonlinear
global models. The volatilities of the time series can be
characterized by the hidden states.

" [2] Jens TIMMER and Andreas S. WEIGEND "Exploiting Local

Relations as Soft Constraints to Improve Forecasting."
Forthcoming in: International Journal of Neural Systems,

Vol. 8 (1997).

http://www.stern.nyu.edu/~aweigend/Research/Papers/StateSpa
ce

Abstract--In time series problems, noise can be divided
into two categories: dynamic noise which drives the
process, and observational noise which is added in the
measurement process, but does not influence future values
of the system. In this framework, empirical volatilities
(the squared relative returns of prices) exhibit a
significant amount of observational noise. To model and
predict their time evolution adequately, we estimate state
space models that explicitly include observational noise.
We obtain relaxation times for shocks in the logarithm of
volatility ranging from three weeks (for foreign exchange)
to three to five months (for stock indices). In most cases,
a two-dimensional hidden state is required to yield
residuals that are consistent with white noise. We compare
these results with ordinary autoregressive models (without
a hidden state) and find that autoregressive models
underestimate the relaxation times by about two orders of
magnitude due to their ignoring the distinction between
observational and dynamic noise. This new interpretation of
the dynamics of volatility in terms of relaxators in a
state space model carries over to stochastic volatility
models and to GARCH models, and is useful for several
problems in finance, including risk management and the
pricing of derivative securities.
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[3] Blake LeBARON and Andréas S. WEIGEND "A Bootstrap
Evaluation of the Effect of Data Splitting on Financial
Time Series." Forthcoming in: IEEE Transactions on Neural
Networks, Vol 9 (1998).
http://www.stern.nyu.edu/~aweigend/Research/Papers/Bootstra

p/

Abstract: This article exposes problems of the commonly
used technique of splitting the available data into
training, validation, and test sets that are held fixed,
warns about drawing too strong conclusions from such static
splits, and shows potential pitfalls of ignoring
variability across splits. Using a bootstrap or resampling
method, we compare the uncertainty in the solution stemming
from the data splitting with neural network specific
uncertainties (parameter initialization, choice of number
of hidden units, etc.). We present two results on data from
the New York Stock Exchange. First, the variation due to
different resamplings is significantly larger than the
variation due to different network conditions. This result
implies that it is important to not over-interpret a model
(or an ensemble of models) estimated on one specific split
of the data. Second, on each split, the neural network
solution with early stopping is very close to a linear
model; no significant nonlinearities are extracted.

4. Presentations
Time Series Analysis and Financial Modeling Johns Hopkins

(Baltimore, Jan 9, 1998)

Modeling Volatility Using State Space Models (London, Dec
17, 1997)

Finding Hidden Structure in Financial Time Series NBER
Summer Institute (Cambridge, MA, Jul 16, 1997)

Data Mining in Finance IBM Research (Yorktown Heights, Jun
11, 1997)

Learning from Data in Finance and Business Leonard N. Stern
School of Business, Affiliates Seminar (Mar 27, 1997)

Time Series Tools Computational Intelligence in Financial
Engineering (New York, Mar 22, 1997)

Hidden Markov Experts RIKEN (Tokyo, Nov 1, 1996)

New Architectures for Time Series Analysis Neural Networks
for Signal Processing (Keynote Lecture) (IEEE-NNSP, Kyoto,
Sep 4, 1996)

Taking Time Seriously: The State of the State Department of
Mathematical Engineering and Information Physics,
University of Tokyo (Aug 29, 1996)

Neural Networks in Financial Engineering Monash
University, Department of Business Systems (Melbourne, Jul
15, 1996)

Time Series and Chaos International Mathematical Society
Meeting (IMS, Sydney, Jul 11, 1996)

Nonparametric Statistics: The Road Ahead Australian
National University, Statistics Department (ANU, Canberra,
Jul 7, 1996) )
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5. Other (Interactions, transitions, patent disclosures, etc.)
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first year of the grant, there unfortunately were no
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Taking Time Seriously: Hidden Markov Experts
Applied to Financial Engineering

Shanming Shi* Andreas S. Weigend
Department of Computer Science 4 Department of Information Systems
University of Colorado Leonard N. Stern School of Business
Campus Box 430 44 West Fourth St., MEC 9-74
Boulder, CO 80303 New York University, New York, NY 10012
shanming@cs.colorado.edu aweigend@stern.nyu.edu
http://www.cs.colorado.edu/~shanming http://www.stern.nyu.edu/~aweigend

Abstract. Most traditional time series models are global models based on local time information: they assume that
the state can be fully and locally (in time) characterized with a finite embedding space. Prediction then amounts
to simple regression. Unfortunately, there are many situations in which simple regression is not sufficient to model
the temporal structure in a time series. We here introduce an architecture that we call Hidden Markov Ezperts.
It is based on Hidden Markov Models used in speech recognition research. By introducing the concept of hidden
states, Hidden Markov experts model time dependency of time series explicitly as a first-order Markov model with
transitions between these hidden states. Within each state, local models are applied to estimate the probability
density, which can be linear or nonlinear depending on the situation. This paper first discusses the statistical
framework and the learning algorithm of Hidden Markov experts, then applies them to daily S&P500 data and to
high frequency currency exchange rate data. The Hidden Markov Experts have better profit than the linear and
nonlinear global models. The volatilities of the time series can be characterized by the hidden states.

Keywords. Regime Switching, Hidden States, Probability Density Prediction, Non-constant Transition Probabili-
ties, EM Algorithm, Risk Estimation, Decision Technology.

Data sets used. High-frequency DEM/USD exchange rates. Daily S&P 500.

1 Introduction

Basic linear time series models are global models based on local time information and are typically based
on two assumptions: (1) stationarity or weak stationarity of the time series, (2) the time series can be fully
and locally (in time) characterized within a finite embedding space. However, many financial time series are
certainly not stationary. In particular, they tend to have either time-varying means or variances or both,
and for high frequency data, have varying dynamics during the day. Some of these problems are addressed
for example through the family of autoregressive conditional heteroskedastic (ARCH) processes, assuming
that the variance of the time series conditionally depends on past variances.

An important class of nonstationarity is piece-wise stationarity where the time series switches between
different regions. Within the regions, the time series satisfy the requirement of stationarity, but between
them, they might have different noise levels or different dynamics. Examples of such models are threshold
autoregressive models and stochastic volatility models. Although a single global model can theoretically
express any relationship including regime switching, it is often very hard to estimate such a global model
from the data. Many architectures have been proposed to solve the problem of regime switching (e.g.,
[Jacobs et al., 1991, Weigend et al., 1995]), which decompose the global model into modular local models
for the regions. However, the key point is how to split the data space. In these models, however, the regions
are assumed to be independent of each other, i.e., if we shuffle the patterns of the data set, there will be no
difference in the final model.?

In this paper, we use Hidden Markov Experts to explicitly model the time dependency between adjacent

*The author is currently with J.P.Morgan & Co. Inc., 60 Wall St, New York, NY, 10260
shi_shanming@jpmorgan.com
1n this paper, the word pattern denotes an input-output pair.




patterns of the time series. HMMs have been widely used in the field of speech recognition where context
is important [Rabiner, 1989]. It can also be used in modeling the time dependency of regime switching.
Related work in this field is Hamilton’s regime switching model {Hamilton, 1990]. However, in Hamilton’s
work the regions or the states can be directly estimated from the current observation, while in Hidden Markov
Experts, the states are hidden from the observation and depend on the whole history of observations. There
are several variations of Hamilton’s work on regime switching, see Chapter 22 in [Hamilton, 1994]. They
however all use linear predictors, whereas we allow for nonlinear predictors.

This paper is organized as follows: Section 2 explains the basic idea and formalism of Hidden Markov
Experts. Section 3 reports the results of the experiments we carried out on computer-generated data (where
we know the true segmentation), as well as on two real-world problems (high-frequency exchange rates
and S&P 500). Section 4 describes the extension of non-constant transition probabilities, and Section 5

summarizes the results obtained.

2 Hidden Markov Experts

Any maximum likelihood approach needs several assumptions. First, a noise model has to be chosen; it

describes how likely an observed data point is, given the model’s prediction. The typical choice of minimizing

the sum of squared errors corresponds to assuming Gaussian distribution for the noise model. Second, a
choice about the architecture, model class or functional form between inputs and outputs has to be made.
Typical examples are linear models for regression, logit for classification, or general nonlinear functions such
as implemented by neural networks. Their output typically are expected values (possibly with variances) as
predictions. In standard regression or classification cases, any dependencies between patterns are ignored.
The third assumption now addresses precisely these dependencies between patterns: we here use a Hidden
Markov model to model the relation between adjacent patterns.

2.1 Hidden Markov Models

Basic Idea: The observed sequence of observations is determined by the underlying unobservable stochastic
process, the state sequence of the HMM, with an emission probability. A Hidden Markov model is called
hidden because these states can not be directly estimated from the observed data. We also assume that the
hidden process is a Markov process: the probability of the next state depends only on the current state and
the transition probability between the two sates. Both the states and the observed process can be either
discrete or continuous. For time series modeling, we use discrete states (corresponding to the regimes) and

continuous observations (corresponding to the time series).

Notation: (1) Observations (time series data): )V = {y*, %, ..,yT}, (2) States: S = {s1,52,...,5m},
(3) Transition probabilities: A = {a;;,1,5 € M,a;; = Prob(next state = jlcurrent state = 1)}, (4) Emission
probabilities: B = {b%,j € M,t € T,b} = Prob(current observation = yt|current state = 7)}, (5) Initial
probabilities of each state: Il = {m;,i € M}. For convenience, the notation A = {4, B, 11} is introduced to
denote the entire set of parameters. ‘

The Maximum Likelihood Function: The central problem of HMMs is to find the parameters A that
most likely fit the observed data . Under our assumption of the time dependency between patterns,
the probability P(y?|)\) is not independent of time t, for pattern at time t. However the joint probability
P(yt,st|)) is independent of time t. The likelihood P(Y|]) is then given as

PO =3 PO =T [T, P sn = ST, PGlst, NP1 1)
vVQ v Q v Q

where Q is the state sequence corresponding to each pattern, e.g. Qa = {511,582, -Stiy - sir|st; € S} and
P(y'|s%, A) = b%. Therefore, to get the probability P()|}), two probabilities need to be estimated: One is
the probability of current state, the other is the emission probability given the current state. Since there
are MT combinations of different Q’s, it is very difficult to take the derivative of equation (1) with respect
to A. An algorithm to do this is called the forward-backward procedure can be used to efficiently calculate

the P(Y|A) [Baum, 1972, Rabiner, 1989].
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2.2 Experts: models for emission probabilities

Now we can specify the architecture for emission probabilities. If we assume the input of the emission model
is ¥ = {2, t € 1..T'}, then the emission probability b% = P(y’|z*, %, ). This is the likelihood of observing
data given the current state and the current input. Wje call each of the specified emission models an expert
and each individual expert corresponds to one state.

The experts can take on different architectures. For instance, we can use a linear model or a nonlinear
model, such as a neural network. Furthermore, different experts can have different sets of inputs. This
turns out to be an important advantage that alleviates the effects of the curse of dimensionality. In this
paper, we are going to use the neural and the AR model as the experts. Instead of emission probability B,
we have a new set of parameters ©p for the emission model. The emission probability B can be computed
from ©p. One can then compute A = {4, O3, II}.

2.3 Learning algorithm

Baum and his colleagues [Baum, 1972] proposed an elegant algorithm called the forward-backward procedure
to calculate P(Y|A). They also introduced an EM (Expectation Maximization) algorithm to maximize this
probability. We here generalize these algorithms to Hidden Markov Experts.

¢ Forward-backward procedure: Define of = P(y!,3?...,3%, st[A), where 1 < ¢t < T. Then
we obtain for the probability P(V|A) = 1M af. The aT can be calculated through the recursive
procedure: o} = m;b} and aft! = [T, afay;]bi™!. This is called the forward procedure. Similarly,
we can define the backward variable 8¢ = P(y**!,y*+2,...yT|st, \). With the recursive induction
BT =1and ft = E:il ;b Bt where t =T — 1,T - 2,...,2,1, we can get all the § for each t.
The reason we need this backward procedure is to use the whole observed sequence to estimate the
probability P(s%|)). With & and §, we can determine the 7/ defined as P(sf|V, A)

’)’t — P(yi S:l)\) — afﬂf — af'th (2)
i - T M

PO~ PO ~ S, alf;
The probability 4} can be used as the estimation of P(s|)), since it is the best we can do given

the whole observation sequence. Similarly an auxiliary probability, Efj = P(st, sj."'lly, A), can also
be computed with a and 3 as

g o PEHSYN _ adagbtia
4T T PO Yol YiL, ataybtt gt

(3)

e EM algorithm: In the expectation step, the probability o and 3, and in turn, the posterior -y
and £ for each ¢, are calculated based on the current estimation of A according to (2) and (3).

In the maximization step, we update the A = {4, ©3,1I} according to m; = v} and

- expected number of transitions from state i to j _ P §fj
“ " expected number of transitions from state i (to anywhere) 3,7

For each emission model, maximizing equation (1) is the same as maximizing the following:
T .
P(Y,s' =5,V 4x, ) = [[,_ PG'Ia*, s}, 0% @)

where the ©% represents the parameters of the emission model of state j. Equation (4) or its
negative logarithm can be viewed as a cost function for the emission model. The way to compute the
parameter ©% depends on the format of the experts and the assumption of the noise. For example,
in our experiment we assume the error to be Gaussian distributed and use neural networks as
experts. Equation (4) is then similar to weighted sum-squared error and the parameter ©% includes
the weights and bias of the network, as well as the variance of the data in state 7.
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2.4 Making prediction

For financial engineering, the key question is how to make predictions with Hidden Markov Experts. In
prediction, we cannot use Equation (2) to estimate the state, because it includes future information. How-
ever, given the sequence of observations up to now, we can estimate the probability of state in terms of the

transition probabilities a;; and « as

P(yl’y2a i ] yt) S§+1|A) _ Zi‘il agaij

P@hv% 91N TE(TY, atay) ©

P(si 1yt 0P, 0t 0) =
The expected value of the prediction then becomes §+! = Z]j‘il jjt"'lP(sj-“Iyl, ¥, eyt A).

3 Experiments

We present one computer simulated data set and two real world data sets, which are the high frequency
Olsen foreign exchange data and the S&P500 daily data. For the real world data, we compute the profit
based on the sign of the prediction, i.e., buy if the sign of the prediction of the next return is positive and
sell if the sign of the prediction of the next return is negative. Each data set is split into a training set and
a test set. All the results given are obtained on the test set.

3.1 Computer simulated data

To convince ourselves of the applicability of the idea, we generate a time series that switches between a
trending and a mean reverting process with i.i.d. Gaussian innovations. The diagonal transition probabilities
of the transition matrix are a;; = 0.98, and ags = 0.97. The trending process is r**! = 0.2r + 0.8 (0, 1),
and the mean reverting process is r*+! = —0.15r% + 0.5 A(0,1). These two are high noise processes where
the signal-to-noise ratio is 0.04 and 0.0225 respectively.

Two AR experts are used in this experiment. In contrast to real world data, we know the true segmentation
of the data set. The experiment shows that the hidden Markov experts recovered the regimes and the
parameters including the variances of the two processes. Figure 1 shows the segmentation of one expert
on out-of-sample data compared to the true segmentation. Table 1 gives the statistics of the parameter
estimations: the transition probabilities A, the AR coefficients «, and the standard deviations of Gaussian

noise o over 20 different runs.

Figure 1: Regimes found by one expert compared to the true segmentation on out-of-sample simulated data.
The solid line shows the true value used when the data was generated, the dotted line the causal prediction

of the model.

ai1 a2 K1 Ko o1 o9
true value || 0.980 | 0.970 || 0.200 | -0.150 {| 0.800 | 0.500
mean of Atted || 0.981 | 0.971 ]| 0.193 | -0.140 || 0.804 | 0.498
std of fitted || 0.002 | 0.004 |[ 0.015 | 0.026 || 0.006 | 0.008

Table 1: Summary of the experiments on the computer simulations. For the transition probabilities on the
main diagonal a;;, the AR coefficients «;, and the noise levels o, we give the true values as well as the mean
and standard deviation of their estimates through 20 runs of the model.
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3.2 High frequency foreign exchange data

The first real world data set is part of Olsen’s DEM/USD foreign exchange rate data based on a variable
time scale, called 9 time, instead of fixed intervals of physical time [Dacorogna et al., 1996]. We model these
data with three experts all using five lagged values of the time series as the input to predict the next value.
We compare the results with a global linear model (the AR model) and a global nonlinear model (a feed-
forward neural network). The neural network has one linear output and 10 tanh hidden units. The training
set contains 1000 points from 19/05/95 17:58 to 09/06/95 14:32. The test set contains 1000 points from
09/06/95 14:41 to 29/06/95 23:54. The Hidden Markov Experts are trained for one-step ahead predictions
(i.e., half an hour in 9 time).

Figure 2 shows the results on the test set. The top panel gives the data, the central panel the absolute values
of the price returns, and the bottom panel shows the segmentation of the three experts for the Olsen test
data. Comparing the lower two panels note that the first expert tends to take the regimes with relatively low
volatility, the second expert tends to take the regimes with relatively high volatility, and the third expert
takes care of the outliers.

When we estimate the parameters of Hidden Markov Experts, we also estimate the variance of each expert.
They are plotted as a function of training time in Figure 4. Note that the variance of the first expert is only
about a quarter of the variance of the second expert. This can be associated with low and high-volatility
regimes. The third expert rarely gets activated in response to large returns.

Figure 3 shows the profit and loss curves of the Hidden Markov Experts after 50 training iterations, in
comparison to a simple feed-forward neural network, linear regression, and to a simple “short-and-hold”
method. The Hidden Markov Experts have the highest profit over the period of the test set.

DEMWUSD

0.01

S
o o
8 8
- [+

absolute retum:
(=)
8
-y

0 100 200 300 400 500 600 700 800 900 1000
. 30-minute steps in Theta-Time(12-29 June 1995)

Figure 2: Panel 1 of this figure is the test set of the Olsen data. Panel 2 shows the absolute values of
the return of the price. Panel 3 shows the regimes found by each experts for the Olsen data. We plot
the responses of all three experts in this panel with different offsets. We can see that the first expert is
responsible for the low volatility regions, while the second expert is responsible for high volatility regions,
and the third expert acts as a collector for the outliers. This result is consistent with the variances of each
expert, given in Figure 4.

An important feature of this architecture is that it gives the entire probability density of the return-not just
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Profit and Loss
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Figure 3: Profit and Loss for Olsen data. This figure shows that the Hidden Markov Experts give the
highest profit in comparison to the pure linear regression and the feed-forward neural network. Transaction

cost are not taken into account.

a prediction of its expected value. An example is given in Figure 5, where the solid line is the mixture and
the dashed lines are the individual Gaussians. The full density can subsequently be used in the computation

of risk [Weigend et al., 1997].

3.3 Daily S&P500

The second real world experiment compares the results of the linear Hidden Markov Experts with nonlinear
Hidden Markov Experts (using neural networks as experts). Two experts have been used for both the linear
and nonlinear Hidden Markov Experts. Each neural network expert has one linear output unit and 10 tanh
hidden units. The training set spans from 01/12/73 to 12/31/86 and the test set spans from 01/02/87 to
12/29/94. Figure 6 shows the S&P 500 data, the daily returns, and the segmentation found by nonlinear
Hidden Markov Experts. The plotted regime corresponds to the low volatility regions, its complement to
high volatility regions. The Figure 7 shows the profit and loss curves of the different methods. The nonlinear
Hidden Markov Experts have better profit than the linear Hidden Markov Experts and the AR model-in

the test period.

4 Time-varying Transition Probabilities

We extend the work described so far by relaxing the assumption of the a;;’s being constant: we assume that
the transition probabilities vary depending upon some external inputs. This is a reasonable assumption for
modeling the complex financial market and the influence of different kind of economic indicators.

Our extension can be compared to Bengio and Frasconi’s “Input Output Hidden Markov Model,” using
a recurrent mixture of experts to estimate the transition probabilities [Bengio and Frasconi, 1996]. The
recurrent architecture and many parameters lead to problems in convergence and overfitting. The problem
is that we have no target for the transition probabilities. Here we provide a new and simpler way to
implement the idea of nonstationarity based on Hidden Markov Experts.

Instead of directly estimating the transition probability P(sf|s%), we can model the time dependency of
the joint probability P(sf,s%). According to Equation (3), we can compute the posterior probability & =
P(st, sj.‘lly, \) with o and B for each time ¢. Then with Bayes rule, we obtain the transition probability
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Figure 4: Learning curve of the variance for each expert for the Olsen data. We can see that the first expert
is responsible for the low volatility regions, while the second expert is responsible for high volatility regions
(similar to the variance of the time series). The third expert acts as a collector for the outliers. (The data
is normalized to unit variance.)

at time ¢
P(st, s*1Y,0)

M
Zi:l P(‘S%: s;-+1|y‘, A)
In order to estimate the transition probability with extra inputs, the architecture can be either a linear
model or a nonlinear model. The target of this local model is §fj at time ¢. Since §fj is a probability,
we can use softmax to meet the constraint. We have applied this model to computer-generated data with

known time-varying transition probabilities. The architecture and algorithm correctly estimates the time
dependency of the transition probabilities.

(6)

t _—
Aij_

5 Conclusions

This paper introduced the theory and architecture of Hidden Markov Experts. We presented several exper-
iments on financial time series. The key results are:

1. We can find clean segmentation into a small number of experts. There is no way of deterrhining
an “optimal” number of experts from first principles and the data. For real world problems, this is
one of the degrees of freedom in modeling.

2. We show that the segmentation can be interpreted in terms of volatility. We carried out tests ran-
domly flipping the sign of the returns, yielding similar segmentation. However, for these randomized
returns the profit disappears as expected. ’

3. We compare the Hidden Markov Experts to linear models and to a simple buy-and-hold strategy.
On all data sets we tested, both profit and Sharpe Ratio are better for the Hidden Markov Experts
than for the benchmarks.

4. We also compare Hidden Markov Experts with nonlinear emissions models to those with linear emis-
sion models. When properly controlled for overfitting, the nonlinear emission models outperform
the linear ones.

5. We extend the standard framework of constant transition probabilities to conditional transition
probabilities.

6. An important application for this architecture is risk management. The algorithm gives the proba-
bility density of the return-not just a prediction of its expected value! The density is expressed as
a mixture of Gaussians and can be used in the computation of various risk measures.

250




Mixture Density
0.25f

0.2r

0.05-

-0.03 -0.02 -0.01 0 0.01 002 0.03
relative retums

Figure 5: Predicted probability density function of the returns for a specific half-hour prediction of the test
set of the Olsen data. The solid curve in this figure shows the mixture of the three Gaussian densities.
The individual densities of each state are shown as dashed curves. The circle corresponds to the mean
prediction, and the solid dot is the target. The individual mean of each expert is shown by the x’s. (We
did not normalize the figure to integrate to unity; the curves are just proportional to the density.)
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Figure 6: The first panel is the S&P500 data, the second panel shows the returns, the third panel is the
state of the low volatility regions.
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Abstract. In time series problems, noise can be divided into two categories: dynamic noise
which drives the process, and observational noise which is added in the measurement process,
but does not influence future values of the system. In this framework, empirical volatilities (the
squared relative returns of prices) exhibit a significant amount of observational noise. To model
and predict their time evolution adequately, we estimate state space models that explicitly include
observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging
from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a
two-dimensional hidden state is required to yield residuals that are consistent with white noise. We
compare these results with ordinary autoregressive models (without a hidden state) and find that
autoregressive models underestimate the relaxation times by about two orders of magnitude due to
their ignoring the distinction between observational and dynamic noise. This new interpretation
of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic
volatility models and to GARCH models, and is useful for several problems in finance, including

"risk management and the pricing of derivative securities.

Data sets used. Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years).
Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).




1 Introduction

Modeling and predicting the volatility of financial time series has become one of the central areas
in finance and trading; examples range from pricing derivative securities to computing the risk of a
portfolio. Volatility is usually predicted using generalized autoregressive conditional heteroskedas-
tic (GARCH) models; Bollerslev, Engle and Nelson (1995) guide through the GARCH literature,
and Engle (1995) collects some of the key papers.

Here we present an alternative to GARCH that models the underlying dynamics using a state
space model. This allows us to describe the hidden process in terms of variables natural for
a dynamic system, such as decay times for shocks, its spectrum, and the dimensionality of the
underlying process. Stochastic volatility models (see Shephard (1996) for a review) are a variant of
the general state space approach presented here. They differ in that the mapping from the hidden
variable to the observed variable is nonlinear. The interpretation developed in this article can also
be helpful for understanding and characterizing stochastic volatility models.

This article is organized as follows: Section 2 discusses observational noise and dynamic noise,
and reviews intuitions and interpretations for linear systems, important for understanding the
results in physical terms, such as decay times of volatility shocks. Section 3 defines and explains
the formalism of state space models. Variations and interpretations that are typical in finance and
in econometrics are given in Section 4. Section 5 describes the three data sets used for the empirical
studies. The results are presented in Section 6, and the effect of ignoring existing observational
noise on the model is discussed in Section 7. Section 8 summarizes the findings and discusses some

of the applications of this approach for noisy time series in finance.

2 Some background concepts'

2.1 Observational noise and dynamic noise

In time series modeling, one crucial question is whether or not observational noise is present in the
data. Observational noise of a high level can pose a severe problem if it is not treated properly,
leading to models that underestimate the functional relation between past and future values. A
typical example of such observational noise is when an astronomer observes a star: fluctuations
in the atmosphere, or a subway train passing by and shaking a telescope that points to the star,
will not influence the dynamics of the star. In contrast, a noise component that does influence the
dynamics of a system is called dynamic noise. For example, in an autoregressive process, the noise
truly moves the state (sometimes also expressed as “the noise drives the system”), and subsequent
values are derived from that moved state.

This article focuses on discrete time dynamics, typically modeled by difference equations or
maps. The distinction between observational noise and dynamic noise is also important for con-

tinuous time dynamics, typically modeled by differential equations.




2.2 Interpretations of linear systems

To facilitate the interpretation of state space models (introduced in Section 3), we first review
autoregressive processes without observational noise, and characterize them from several perspec-
tives. A simple way of generating a time series is through an autoregressive (AR) process of order p,
AR[p] (Yule 1927, Priestley 1981, Oppenheim and Schafer 1989)

P
o(t) = Y ezt i) +€t) (1)
i=1
where (t) denotes an uncorrelated Gaussian distributed random variable with mean zero and
constant variance o2, N'(0,02). Through the eyes of a physicist, such a process can be interpreted
as a combination of relazators and damped oscillators (Honerkamp 1993). The simplest case is an
AR([1] process
z(t) = az(t — 1) + €(t) - (2)
It can be characterized in the time domain as a relaxator by an exponentially decaying impulse
response, proportional to exp(—t/7), with the relaxation time
1
T= “loga ®)
After this time, the amplitude of an impulse will have decayed to 1 /e or 37% of its initial value.

In the frequency domain, an AR process can be interpreted as a filter responding to white

noise. The power spectrum of an AR[1] process drops off with

2

o? g
Sw) = [1—ge~®|2 ~ 1+a%—2cosw ’ @

For an AR[2] process, there are two qualitatively different cases, depending on the values of the
parameters. We can always rewrite a single AR[2] model as a set of two AR[1] models using the

transformation
a1 a
A= ( 11 02 > (5)
Tts eigenvalues
v a a2
A= '?1 + -{Il' + a2 (6) .

characterize the behavior of the AR[2] process. If the eigenvalues are real (a2/4 + a3 > 0), the
AR[2] process can be characterized as the superposition of two relaxators, and the spectrum drops
off monotonically with increasing frequencies, again with decay constants

1 .
_logz\i (2:‘_1’2) . (M

T =

If the eigenvalues are complex, the AR[2] process describes a resonance, corresponding to a hump

in the spectrum.! In both cases, the spectrum is given by

0,2

= 1—are ™ — age—2w |2

S(w) 8

1For a damped oscillator (the case of complex eigenvalues), the parameters can be expressed through the char-
acteristic period T and the relaxation time 7 as

2cos (%?) exp (—-1/7)

—exp (-2/7)

a1

a2




By increasing the model order, an AR[3] process can combine a relaxator with an oscillator, and
an AR[4] process can describe two oscillators, etc.

Despite the simplicity and multiple interpretability of AR models, not all processes in the world
are linear autoregressive. Examples of generalizations without hidden states consist of including
past ¢ driving noise terms in the dynamics, yielding an autoregressive moving average ARMA[p, ¢]
processes,? as well as including nonlinearities.? Here we extend autoregressive models in a different
direction, by allowing for a hidden state.* The next section introduces the notation and gives the

formalism of state space modeling.

3 Formalism of linear state space models (LSSM)

In Eq. (1) the z(t) served two roles: it was the variable that was observed, and it was the variable
in which the dynamics was expressed. However, there are processes where the dynamics cannot
be observed directly because it is masked by observational noise. Thus, no direct map exists from
the observed data to the state. This requires the notion of a hidden state. In terms of notation, we
keep the letter z as the variable that contains the dynamics, and use y(¢) for the observed variable.
The state, characterized by the vector Z(t), captures all the information needed to characterize the

system at time ¢.

The key to state space modeling is to split the noise into two parts:

o dynamic noise &(t) that drives the evolution of the hidden state, and

e observational noise 7(¢) that is a non-explainable additive contribution to the measured y(t).

These contributions have been discussed in intuitive terms in Section 2.1. Their formal role
can be seen by observing how they enter the two equations that describe a linear state space model

(LSSM):

Ft) = Af(t—1)+€(t), &t) e N(0,Q) (9)
y(t) = CZ(@)+n(t), n(t) € N(0,R) . (10) -

Eq. (9) describes the dynamics. Eq. (10) maps the dynamics to the observation and includes the
observational noise 7(t).

As in the case of the observable linear autoregressive model, discussed in Section 2.2, describing
the process via physical quantities can yield important insights. The spectrum of a LSSM is given

2While for theoretical reasons ARMA[p,p — 1] should be preferred to AR[p] processes for modeling of sampled
continuous-time processes (Phadke and Wu 1974), we find that in practice, differences in the results are small.

3The linear mapping given by Eq. (1) can be generalized to become a nonlinear mapping. Note that this is fully
within the autoregressive framework and amounts to simple regression. Nonlinear approaches include radial basis
functions (Casdagli 1989, Moody and Darken 1989, Poggio and Girosi 1990), neural networks (Lapedes and Farber
1987, Weigend, Huberman and Rumelhart 1990), and nonparametric kernel methods (Tjostheim and Auestad 1994).

4This article explores the idea of a continuous hidden state, characterized by a scalar z(t) or a vector Z(t). The
dynamics is expressed in terms of that unobserved state, and the state is subsequently mapped to the (conditional
expectation of the) observed quantity. In contrast, Hidden Markov models (Rabiner 1989, Fraser and Dimitriadis
1994, Hamilton 1994, Bengio and Frasconi 1995, Shi and Weigend 1997) assume the hidden state to be discrete:
for each of these hidden states, there is an “agent” or “expert” (e.g., expressed as an autoregressive model) that
generates the next data point. This introduces a second level of dynamics that is described by the transitions
between the hidden states. This level of dynamics is absent in a pure autoregressive framework.
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S(w) = C(1 - Ae™¥)1Q (1 - Ad*)™) CT+R . (11)
The superscript (-)T denotes transposition. The spectra of AR processes, Eq. (8), are a subset
of Eq. (11). Note that LSSM spectra include shapes that cannot be generated by AR processes.
An important example of such a shape is a spectrum where for low frequencies the power drops
similarly to an AR[1] process (see Eq. (4)), but for higher frequencies the power remains constant
and does not continue to fall, as an AR model would require it to. This can be interpreted as
a low-frequency process whose spectral energy decreases as the frequency increases, until it is
masked by a noise floor of a noise source with a flat spectrum: This low-frequency signal above a
flat noise floor is the crucial spectral signature of a LSSM that cannot be emulated by an ordinary

autoregressive model.

While parameter estimation in AR models is well established (e.g., by the Burg or the Durbin-
Levinson algorithms), it is more cumbersome in the case of state space models . A standard
approach uses the expectation maximization (EM) algorithm (Dempster, Laird and Rubin 1977),
a general iterative procedure for estimating parameters for models with hidden variables. In the
E-step, it is assumed that the parameters of the model are known, and the hidden variables are
estimated. In the M-step, the estimates of the hidden variables are taken literally and the values
of the parameters are adjusted. This approach was first applied to LSSM by Shumway and Stoffer
(1982).

Specifically for the case of the LSSM, the first E-step starts from the initial values of the
parameters A,Q,C, R, and estimates the hidden dynamic variable Z(t) using a Kalman filter.
With the following definitions

e zyp := the predicted value of a quantity z(t) based on the data y(1),...,y(t'),
e Qy := the covariance matrix of the estimated Z(¢), and

e Ay := the variance of the prediction errors (y(t) = vy )s

the equations for the Kalman filter are (Kalman 1960, Gelb 1974, Sorenson 1985, Harvey 1989, Aoki
1990, Bomhoff 1994, Hamilton 1994, Mendel 1995):

Qg1 = AQt—1|t-—1AT +Q (12)
Dppy = CQﬂt_lCT +R (13)

K = QuaCTag,, (14)

Qp = (1-KC)Quye-1 (15)

g1 = ATy (16)
Ytjt—1 = Cftlt—1 (17)
Ty = Tyt K(y(t) — yeje-1) . (18)

There is a crucial difference between the first four equations and the last three. The first four
equations, Eq. (12-15), do not contain the data, they only describe relations between the param-
eters A, Q,C,R,Q, A, and K. Their purpose is to find the value of K (the Kalman gain) that




subsequently enters Eq. (18). K gives the appropriate weight to the added term originating in the
error between the actual observation y(t) and prediction ygj¢—1.

For true prediction, i.e., when y(t) has not yet been observed, Eq. (16) has to be used for the
unobserved state variable, and Eq. (17) for the observable. For model parameter estimation, on
the other hand, the entire training data can be used, and an improved estimate of Zyy can be
obtained by the following three equations (Harvey 1989):

B = ‘QtltATQt—_:Ht (19)
Tyn = Tye +B(Fror v — Adys) (20)
Qv = Qe +B(Qeayy — Qt+1|t)BT . (21)

This concludes the E-step.

In the subsequent M-step, the parameters A, Q, C, R are updated; an example of the derivation
of the equations can be found in Honerkamp (1993). The iterative model fitting process ends when
a convergence criterion is met. This concludes the description of how the model parameters are
updated in the M-step. '

Once a model has been built, its quality can be evaluated by several different criteria, including:

e Predictive accuracy. True out-of-sample predictions are generated using Eq. (17) on a test
set that comes after the training period. The accuracy of the predictions can be compared
to competing models by different evaluation criteria, such as squared errors or robust errors.

e Whiteness of the prediction errors. The model should explain all temporal correlations
in the data: a perfect model takes the signal and turns it into white noise. Statistically, the
question is whether we can reject (at a certain level of significance) the null hypothesis that
the residuals are uncorrelated. Following Brockwell and Davis (1991), we use a Kolmogorov-
Smirnov test to determine whether the periodogram of the residuals is consistent with a flat

white noise spectrum.
¢ Generating data from the model. The distribution of a certain feature can be derived
from realizations of the model and compared with that feature as directly computed from

the observed data.
For linear models, two additional criteria are useful:

e Behavior in the time domain (relaxation times). The parameters in linear models are
related to relaxation times of the corresponding oscillators and relaxators. When the relax-
ation times are too small (of order of one time step), they usually only fit noise, indicates

that the order of the model is too large.

e Behavior in the frequency domain (spectrum). The spectrum of the linear process can
be computed from the parameters of the estimated models through Eq. (11). Since the
spectrum of the model should correspond to the expectation of the periodogram of the data,
comparing the spectrum to the periodogram is another important qualitative criterion.




The suggestions listed here are just some of the useful general criteria that will be used in this
article. For any specific problem, there are additional, more specific smoke alarms and sanity

checks.

4 Applications of state space models to finance

This section discusses two common applications of state space models in financial data, and com-
pares them to our approach. For simplicity of notation, this discussion is written for the case of a

scalar z(t):
z(t) = az(t—1)+¢€(t) (22)
y(8) cz(t) +n(t) . (23)
The dynamic equation, Eq. (22), is characterized by the single AR[1] coefficient a; €(t) is the
dynamic noise that drives the dynamics. The observation equation, Eq. (23), maps the unobserved
state z(t) to the observed variable by scaling it with c. The added observational noise, n(t), does
not enter the dynamics.

4.1 Smoothing

The first approach splits the variance and results in a smoother series. It can be interpreted as a
method for trend estimation. Here, parameter a is not estimated from the data to characterize the
dynamics (as in our approach), but rather set to unity. Without loss of generality we can also set

¢ to unity, yielding
z(t) —z(t—-1) = €(2) (24)
y(t) = =) +n() - (25)

Eq. (24) interprets ¢(t) as the first difference of the series. Reducing the variance of ¢(t) by moving
some of it onto 7() results in z(t) as a smoothed version of y(t). The variance of the original data
y(t) is thus decomposed into observational noise, n(t), and a smoother signal, z(t). This can be
expressed in a Bayesian framework as a prior on the smoothness of the time series, as discussed by -
Kitagawa and Gersch (1996). Note that Eq. (24) resembles Brownian motion. However, it is not
to be interpreted that way here, but as a smoothing constraint for the undisturbed signal instead.
The smaller ¢(t), the smoother z(t).

This smoothing approach is taken in most state space applications in finance. Bolland and
Connor (1996) add to this approach a second non-constant part that is a linear function of the
difference of the last two values of the state. This is effectively adding a constraint on the second
differences (curvatures) of z(t), in addition to the first differences. Moody and Wu (1996), Moody
and Wu (1997a), and Moody and Wu (1997b) use two variations of the simple smoothing model
with @ = 1, and use the term “true price” for the smoothed version of the observed prices.

4.2 Variable parameter AR processes

The second variation of the state space model also uses the state equation to model a slowly varying
quantity as in Eq. (24), but the interpretation of the observation equation changes substantially.




The constant ¢ from Eq. (23) is-replaced by y(t — 1). The equation then becomes
y(t) = z(t)y(t - 1) +n(t) , (26)

representing an AR[1] process. z(t) has become an autoregressive parameter that slowly varies with
time, and the former observational noise n(t) now acts as dynamic noise (Wells 1996), whereas we
assume the parameters that characterize the system are constant over time.

4.3 Modeling noisy linear systems

The two cases above do not do justice to the dynamic structure of Eq. (22). In contrast, this article
focuses on estimating the full hidden dynamics from the data. This allows us to characterize the
process as a linear damped system of relaxators and oscillators, driven by dynamic noise, and
observed through a veil of added observational noise.

In the econometric literature, stochastic volatility models have been used to describe the dy-
namic structure of returns, see Shephard (1996) for a recent review. In the notation of the present

article, a stochastic volatility model can be expressed as

z(t) = ag + arz(t—1) + €(t) 27)
y(t) n(t) exp(z()) - (28)

The idea behind using exp(z(t)) is to model the skewed distribution of squared returns found
for the empirical data. Parameter estimation in this model is cumbersome due to the log-normal
distribution of exp(z(t)). It is usually based on the generalized method of moments, quasi-likelihood
estimation or Markov chain Monte Carlo methods. In contrast to stochastic volatility models, we
apply a static transformation to the data that will be introduced in the next section in order to
make the distribution of squared return approximately normal. This allows us to use as standard

maximum likelihood framework for the parameter estimation.

5 Data

This article reports results on the following data sets:

e High frequency DEM/USD foreign exchange rates.> We began with eight years of data
(through June 29, 1995) spaced apart 30 minutes in ¥-time (Theta-time). We dropped
all points with missing values, and then took every fourth of the remaining points for our
analysis, effectively downsampling to two hours in ¥-time.5 9¥-time removes daily and weekly
seasonality: time of day with a high mean volatility are expanded, and times of day and
weekends with low volatility are contracted (Dacorogna, Gauvreau, Miiller, Olsen and Pictet

1996).

5We thank Michel Dacorogna (Olsen & Associates, Zurich) for the high frequency DEM/USD exchange rate
data.
6Whether half-hour or two-hour intervals in 9-time are taken does not change the results reported here, since
the time scale of the dynamics that we find is two orders of magnitude slower than the sampling interval. However,
if we were to have changed the sampling interval by a larger factor, note that Brown (1990) shows for S & P 500
Index futures that the estimated (unconditional) volatility decreases by 13% as the sampling interval is changed

from one minute to one hour.




o Daily stock indices. We use two stock indices:

— Nikkei 225 index (40 years of daily data, through October 15, 1996, 12288 points total),”

— Dow Jones Industrial Average (25 years of daily data, through October 16, 1987, 6252
points total).?
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Figure 1: This figure displays a six-month window of the high frequency foreign exchange data,
sampled at two hour intervals in J-time. The top panel shows the prices, the middle panel shows
the relative returns, and the bottom panel shows the series used in our analysis, i.e., after applying
the logarithm and scaling it to zero mean and unit variance.

The top panel of Fig. 1 graphs the level of DEM/USD for the first half of 1995. Its periodogram,
shown in the left panel of Fig. 2, drops to first approximation as the spectrum of a random walk
whose 1/ f2 line is also indicated. (f denotes the frequency.) The signature of observational noise—
a noise floor masking the signal at high frequencies—is absent: the periodogram continues to drop

7We thank Morio Yoda (Nikko Securities, Tokyo) for the Nikkei 225 stock index data.
8The Dow Jones Industrial Average data set is described in LeBaron and Weigend (1997) and available through
www.stern.nyu.edu/"aveigend/Research.




to the highest time scale. The result is that price levels p(t) of financial instruments do not exhibit
significant observational noise; all the “noise” on prices is dynamic, i.e., it re-enters the dynamic
equation.

The central panel of Fig. 1 shows the difference of the logarithm of the price levels

logp(t) — logp(t — 1) =log p(l;(_t)l) ~ P(t)p(—tli(tl)- Y . (29)

This quantity can be interpreted as the logarithm of the geometric growths, i.e., as the logarithm of
the ratio of the prices. Using the fact that the logarithm Taylor expands around 1 as loge = 1+¢,
it can also be interpreted as the returns normalized by the levels, i.e., the relative returns. Note in
the central panel of Fig. 1 that the width of the “band” varies over time; regimes with larger shocks
(positive or negative) alternate with regimes with smaller widths. The corresponding periodogram
of the relative returns is shown in the right panel of Fig. 2. Note that it is essentially flat: the
subsequent returns on the two-hour time scale in J-time appear to be (linearly) uncorrelated.

To exploit this observed structure in the absolute values of the relative returns, we square the
relative returns, i.e., ignoring their signs. The distribution of the squared returns is very skewed.
To make it less skewed, we take their logarithm,

) 1?
y(t) = log [Iog o (_) 1)] . (30)
The logarithm of the squared relative returns, y(t), is shown for the DEM/USD data in the the
bottom panel of Fig. 1.

The squared relative returns can be interpreted as independent realizations of arandom variable
with a slowly changing mean. If the relative returns logp(t)/p(t — 1) were normally distributed
with unit variance, their squares would follow a X3 distribution. The variance of this x*distribution
is twice its mean, implying that the realizations are very noisy indeed! This is the source of the
observational noise for volatility. On empirical data, it is well known that the relative returns
log p(t)/p(t — 1) are not normally distributed, but have fatter tails. However, the spirit of the
explanation for the observational noise still applies; see also Diebold and Lopez (1995).

Fig. 3 shows this effect. The periodogram of the data contains most of its power at low
frequencies. Subsequently, as the frequency increases, it begins to drop. Finally, it flattens out
as the signal gets masked by this “observational noise,” stemming from the noisy realizations of
the slowly changing means of the squared returns. Note the absence of a daily or weekly peak in
this periodogram: while present for data in chronological time, it has been successfully removed by
Olsen’s projection of the data onto ¥-time. This periodogram is similar to figures in Schnidrig and
Wiirtz (1995) and in Andersen and Bollerslev (1997). However, neither of these papers interpret
the signature as evidence for observational noise, nor do they use a state space model to explain
the data.

The key features of the periodogram—a drop over many orders of magnitude for price levels,
a roughly constant level for returns, and a low frequency signal disappearing into observational
noise at higher frequencies for squared returns—hold for all the financial data sets we analyzed,
including six other currencies on different time scales, as well as several stock indices. The fext

section gives detailed results for DEM/USD and Nikkei 225, as well as brief results for the Dow

Jones industrial index.
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6 Results

Table 1 summarizes the results for the high frequency DEM/USD data, comparing linear state
space models with ordinary AR models. The linear state space models differ crucially from the
AR models in the decay times 7: while the decay times of the state space models are significant,
they are negligible for the AR models where the processes typically decay within one time step.
Since the state space model is fitted to y(t) as defined in Eq. (30), the decay times characterize
when the logarithm of the squared relative returns has decayed to 37 % of its initial value.

For first order models describing a single relaxator, there is a huge difference in decay time

. Periodogram of Prices Periodogram of Relative Returns
10 T Y T T T T T

10 ]
10° ]

10

Spectral Power
Spectral Power

107}

S 10-‘ 1 1 i
107 10 0 1 - 2 3
Frequency requency

Figure 2: Periodogram of the DEM/USD prices (left), and of the relative returns (right). Expressed

‘in 1/time, the leftmost points correspond to 1/(8 years), 1/(4 years), 1/(2.6 years), 1/(2 years).
To guide the eye, we also plotted the 1/f? drop in spectral power of a random walk over six orders
of magnitude. The periodogram of the returns on the right hand side is essentially flat. Neither
the prices nor the returns indicate the presence of observational noise, in contrast to Fig. 3.
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between 156 time steps for the LSSM in contrast to an insignificant 0.45 time steps for the AR
process. The eigenvalues of the second order models, given by Eq. (6), turn out to be real;
the process thus corresponds to the superposition of two relaxators. The slower one of the two
relaxators settles to around 240 of the 2-hour steps and corresponds to 20 days, whereas the slower
AR relaxator still decays in a single time step. Using third and fourth order, oscillators emerge
whose resonance frequencies 1/T correspond to about one day. They might indicate a tiny amount
of periodicity left after the transformation of the raw data to ¥-time, but they do not contribute
significantly to the dynamics since their relaxation times are of the order of a few time steps only.

T T T y T T T LA B S L Y T

{ =} Pericdogram of data 1

Spectral Power
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10°}- (~ ) SSM order 1

T

sl Lo gl A
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Figure 3: Periodogram (“+”) of the DEM/USD exchange ratés, and spectra of the estimated state
space models (SSM) of order one (dashed line) and higher orders (solid lines).

-
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. Prob
Models 7 (decay times) . )
DEM/USD | 1step=2hours | ‘v coefficients white | Eus
TSSM (D) 156 0.904 0 [0.960
0.996 0
LSSM(2) 240, 1.09 0 0300 072 | 0.957
- 0966 0 0
LSSM(3) T =17 =1 0 0507 —0.188 057 | 0.957
: 0 0188 0507
0996 0 0 0
243,1.1 0 0411 0 O
LsSM(4) [T =85 r=10] 0 0 0666 —0612 0-70 10957
| 0 0 0612 0.666
AR(L) 0.45 0.107 0 ]0.088
AR() 0.85, 0.64 0.100 0.066 0 ]0.984
15
AR(3) o657 =08g | 0007 0062 004 %-6 | 0.982
18,12
AR(4) e ie—1y | 0095 0058 0039 0.049 Te-d | 0.979

Table 1: Results for the volatilities of the DEM/USD exchange rates. While linear state space
models (LSSM) of order two and above fit the data well, ordinary AR models cannot explain the
structure of the data.

The decay constants presented here are defined for the logarithm of the squared relative re-
turns. Nonlinear transformations do not allow for an amplitude-independent interpretations of
decay times in general. However, fitting state space models directly to the absolute or squared
relative returns (without taking the logarithm) yields similar decay constants. This implies that
our characterization also hold for stochastic volatility models.

The fourth column in Table 1 shows that the residuals of the state space model of order
one are not consistent with white noise, implying that a first order LSSM does not describe the
data adequately. However, all higher order LSSMs produce residuals consistent with white noise
at a significance level of 0.05 for the Kolmogorov-Smirnov test on the whiteness of the residuals
(Brockwell and Davis 1991). None of the residuals of the AR models are consistent with white
noise. This is another indication that AR models are not an adequate model class for volatility.

The last column gives the normalized mean squared error, Enyms, between the observed y(t)
and the predictions obtained via Eq. (17). Whereas for LSSM, the error drops quickly to a constant
level of 0.957 at order 2, it decreases for AR models at a much slower rate, and also remains at a
higher level. In an AR(10) model, for example, Enms takes the value of 0.973, still significantly
above the value of the second order LSSM.

We now turn to the power spectra. The curves in Fig. 3 are the power spectra of the state
space models. They are computed using Eq. (11). There is a clear difference between the first
order spectrum and the higher order spectra. The higher orders (> 2) are very similar, indicating
that the second order state space model is indeed sufficient. The spectra of the state space models

9The spectra and the periodogram are normalized. For the lowest 200 frequencies, all periodogram points are
plotted. Above this frequency, they are logarithmically thinned out for the sole reason to keep the files reasonably
small for the on-line version. The visual impression in the printed version does not change.
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correspond well to the periodogram of the data. Note that the spectra are not obtained by some
direct smoothing of the periodogram in frequency space, but are the spectra of the state space
models which were fitted in the time domain.

Models T (decay times) Prob of z

Nikkei225 1 time step = 1 day white noise NMS

LSSM(1) 63.1 0.004 0.906

LSSM(2) 81.8,1.45 0.56 0.905
81.2

LSSM(3) [T =87r =69 0.64 0.905
81.7,1.46

LSSM(4) T=84r=10] 0.57 0.905

AR(1) 0.54 i 0 0.975

AR(2) 1.20,0.82 0 0.959
1.85

AR(3) [T =66 = 1.05] Te-7 0.951
2.93,1.59

ARM) | r=4157 =161 0002 | 0.940

Table 2: Results for the volatilities of the Nikkei 225 stock index. While linear state space models
of order two and above fit the data well, ordinary AR models cannot explain the structure of the
data.

The results for the second data set, the logarithm of absolute values of the relative changes
of the daily Nikkei 225 level, are summarized in Table 2. The key point is the large decay time
of about 3 1/2 months, revealed by the state space models of order two and above, as well as the
failure of AR models, very similar to the DEM/USD data set discussed.

The third data set, the logarithm of absolute values of the relative changes of the daily Dow
Jones Industrial Index, reveals a decay time of 117 days or about 5 months. In that case, a one
dimensional hidden state already generates residuals that are consistent with white noise. As in
the other two examples, no ordinary AR model in the observed variable explains the data. This

effect will be clarified in the next section.

7 Ignoring observational noise

The failure of AR models shown in the previous section is a consequence of the observational noise
that is present in the volatility data. Whereas linear state space models include the observational
noise explicitly in the model, autoregressive models assume that the data is free from observational
noise. We use a simple first order process to demonstrate the consequences of ignoring observational

noise on the autoregressive parameter.
In an AR[1] model, z(t) = az(t — 1) + €(t), the parameter a can be estimated without bias as
Yozt —1z(t - 1)

If, however, the dynamics is covered by observational noise

a=

y(t) =z(t) +n(t), n~N(OER) , (32)
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the expected value (denoted by <->) of @, estimated in analogy to Eq. (31) from y(t), now becomes

~ <yt-1 t) > a
<e>=2 y(f(—- 1) )y(zt/(—)l) S =1+R/<z(72> (33)
Thus, the larger the variance R of the observational noise, the worse the parameter a will be
underestimated. This effect is known from linear regression as the problem of errors-in-variables
(Fuller 1987). It was first mentioned in time series context by Kostelich (1992), see also Kénig and
Timmer (1997). The underestimation of the functional relation between past and present values
carries over to more general models, including nonlinear models (Carroll, Ruppert and Stefanski
1995, Weigend, Zimmermann and Neuneier 1996).

8 Summary and Applications

This article showed the important distinction between observational and dynamic noise. When ob-
servational noise is present, an autoregressive approach cannot model the data adequately—a state
space approach is needed to capture the hidden dynamics. In finance, neither prices nor returns
tend to have observational noise. However, volatilities do exhibit signature of observational noise
in the periodogram: for low frequencies, there is structure above the noise floor of observational

noise.

We showed on three representative financial data sets that a linear state space model with full
dynamics can describe volatilities well. We also showed that the resulting models can be nicely
interpreted, both from the perspective of physics as a superposition of two simple relaxators, and
from the perspective of finance as volatility clustering with a decay time of about three weeks (for
DEM/USD), 3 1/2 months (for Nikkei 225), and 5 months (for Dow Jones Industrial Average).
These results are in strong contrast to AR models that ignore observational noise and consequently
have a bias toward too small coefficients, as shown in Section 7. The more promising modeling
approach using state space models over AR models for volatility suggests several applications in

financial markets, including

o Estimating risk. Knowing the evolution of the volatility is important for determining the -
risk associated with a position on a financial instrument: the volatility can be interpreted as

the conditional standard deviation of the returns.

e Pricing derivative securities. Using financial theory, discrepancies between the predicted
volatility and the implied volatility can be translated into mispricings, which can in turn be

exploited in trading.

e Information for regime switching models. The predicted volatility can be an important
input for trading models based on the “gated experts” architecture (Weigend, Mangeas and
Srivastava 1995). In this case, the hidden state is offered as an additional input to the gate

to help determine the current region.

In summary, we discussed the signature of observational noise in the frequency domain and
showed on three data sets that volatilities exhibit that signature, but not the prices or returns. We
showed that allowing for a hidden process with two or more degrees of freedom, and modeling the
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full dynamics of this process, gives interpretable results yielding residuals consistent with white
noise. We are currently evaluating on several time horizons the performance for true volatility pre-
dictions of state space models in comparison to historic data (Figlewski 1994), GARCH (Bollerslev

et al. 1995), and stochastic volatility models (Shephard 1996).
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A Bootstrap Evaluation of the Effect of
Data Splitting on Financial Time Series

Blake LeBaron and Andreas S. Weigend

Abstract— This article exposes problems of the commonly
used technique of splitting the available data into training,
validation, and test sets that are held fixed, warns about
drawing too strong conclusions from such static splits, and
shows potential pitfalls of ignoring variability across splits.
Using a bootstrap or resampling method, we compare the
uncertainty in the solution stemming from the data split-
ting with neural network specific uncertainties (parameter
initialization, choice of number of hidden units, etc.). We
present two results on data from the New York Stock Ex-
change. First, the variation due to different resamplings is
significantly larger than the variation due to different net-
work conditions. This result implies that it is important to
not over-interpret a model (or an ensemble of models) es-
timated on one specific split of the data. Second, on each
split, the neural network solution with early stopping is very
close to a linear model; no significant nonlinearities are ex-
tracted.

Keywords—Model evaluation. Model uncertainty. Boot-
strap. Resampling. Financial forecasting. Time series pre-
diction. Linear bias of early stopping. Superposition of
forecasts. Model merging.

Date—Dow Jones Industrial Average, 1962-1987. Volume
from New York Stock Exchange, 1962-1987. The data used
in this article is available from the web sites of the authors.

I. INTRODUCTION

Training a network on a time series is not hard, but once
we have a network, how much can we trust the forecasts for
truly new data? On the one hand, if the time series is fairly
long (above a few thousand points), and if it is fairly clean
(noise of less than one percent of the signal), the evaluation
of a model is relatively easy, since only very few functions
will it some held-back data very well. This regime can be
described as a “right-with-probability-(1 — €)-regime.” On
the other hand, for very noisy and/or very short time series,
one can only hope to be right on new data with a proba-
bility of (0.5+¢). An example would be the forecast of the
direction of a stock price movement. It is well known that
random predictions, or random trading strategies, can yield
deceptively long sequences of good predictions or profitable
trades. In such noisy problems, many functions will be in-
distinguishable in their forecasting quality. When connec-
tionist techniques are used, additional choices (such as the
architecture, training procedure, and the random initial-
ization of the network) make the evaluation even harder.
Evaluating a model for noisy time series can be more work

The authors can be reached at:

Blake LeBaron, Department of Economics, University of Wis-
consin, 1180 Observatory Drive, Madison, WI 53713,
blebaron@facstaff.wisc.edu, http://wuww.econ.wisc.edu/~blake;
Andreas Weigend, Department of Information Systems, Leonard
N. Stern School of Business, New York University, 44 West 4th
Street, MEC 9-74, New York, NY 10012, aweigend@stern.nyu.edu,
http://wuw.stern.nyu.edu/~aweigend .

than estimating the parameters.

A standard procedure for evaluating the performance of
a model is to split the data into one training set (used for
the parameter estimation, e.g., through gradient descent or
second order methods), one validation set (used to deter-
mine the stopping point before overfitting occurs, and/or
used to set additional parameters or hyperparameters, such
as the importance given to penalize model complexity),
and one or more test sets. This procedure has been used
for many years in the connectionist community, see e.g.,
Weigend et al. (1990). Our more recent experience has
found this approach, along with conclusions drawn from
it, to be very sensitive to the specific splitting of the data.
Therefore, usual tests of forecast reliability can easily be
overly optimistic.

This article addresses these problems with a bootstrap
method. The approach we present combines the purity of
splitting the data into three disjoint sets with the power of
a resampling procedure, giving a better statistical picture
of forecast variability, including the ability to estimate the
effect of the randomness of the splits of the data vs. the
randomness of initial conditions of the network.

This is not the first article that uses the bootstrap in
a connectionist context. Weigend et al. (1992) used the
bootstrapping of residuals to evaluate the forecasting power
of a neural net for exchange rate forecasts, and Connor
(1993) also bootstrapped residuals to obtain error bars for
the iterated time series predictions. The goals were differ-
ent from the goal of the work reported here. In this article
we resample pairs which will be clarified in Section II-A.
Resampling pairs was first suggested by Efron (1982), and
first used in the connectionist community by Paass (1993)
on the example of noisy exclusive OR. Tibshirani (1996)
applied the bootstrap machinery to networks in a cross-
sectional context. However, none of these articles evaluate
the effect of using the common, simple, static sample split
on the performance reliability.

To demonstrate our method, we wanted to use a data
set that lies somewhere between simple noise-free function
fitting, and a sequence of true random numbers where no
model has a chance. We picked the daily trading volume!
on the New York Stock Exchange, where predictions can
explain about half of the variance. Section II of this ar-
ticle describes the method and the data set, Section III
presents the empirical results of the study, Section IV dis-
cusses other sources of uncertainty not captured by the
bootstrap, and Section V draws some conclusions.

L Although forecasting prices is a potentially more lucrative target,
volume actually is interesting to the economist whose goal is to un-
derstand how markets function.
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II. EXPERIMENTAL DESIGN
A. Bootstrapping Methodology

Randomness enters naturally in two ways in neural net-
work modeling: in the splitting of the data, and in choices
about the network initialization, architecture, and train-
ing. A standard procedure for finding a good network is to
split the patterns derived from a time series into three sets:
training, validation, and test sets. The training set is used
for parameter estimation (in simple backpropagation, by
updating the parameter by gradient descent on some cost
function). In order to avoid overfitting, a common proce-
dure is to use a network sufficiently large for the task, to
monitor (during training) the performance on the separate
validation set, and finally to choose the network that corre-
sponds to the minimum on the validation set, and employ
it for future purposes such as the evaluation on the test
set. These sets have no patterns in common. The usual
procedure fixes these sets. As many statistical quantities
as desired can be estimated in the test set, but this leaves
one question wide open: What is the variation in perfor-
mance as we vary training, validation, and test sets? This
is an important question since real world problems don’t
come with a tag at each pattern saying how it should be
used! Also, if we were to only train one network on such a
split, this would not tell us how stable the performance is
with respect to network choices.

Since there is not just one “best” split of the data or obvi-
ous choice for the initial weights etc., we will vary both the
data partitions and network parameters in order to find
out more about the distributions of forecast errors. We
use a computer intensive bootstrapping method to evaluate
the performance, reliability and robustness of the connec-
tionist approach, and to compare it with linear modeling.
Bootstrapping involves generating empirical distributions
for statistics of interest through random resampling. We
combine bootstrapping along with random network selec-
tion and initialization.

In more detail, in order to understand the impact of
the splitting and network choices, we draw a realization of
splits and network conditions, and train a complete model
on this realization. This is sometimes called bootstrap-
ping pairs (Efron & Tibshirani, 1993), since the input-
output pairs or patterns remain intact, and are resampled
as full patterns. This can be contrasted with training one
model only, and resampling the errors of that one model
to obtain a distribution, called bootstrapping residuals.
The latter method was used in single-step prediction by
Weigend et al. (1992) in the context of foreign exchange
rate predictions. One model was built on one split of the
data. Similarly, in an application to load forecasting, Con-
nor (1993) trained one single-step prediction network on
one split of the data, then resamples from the empirical
distribution of the single-step errors and adds these to the
inputs in order to obtain estimates of the errors of iter-
ated forecasts. In this residuals bootstrap, the residuals
obtained from one specific model are used in rebuilding
pairs or patterns to obtain error bars reflecting all sources

of error, including model misspecification. In contrast, here
we are interested in variation due to sample splits rather
than error bars. Every “run” has a different assignment
between the sample patterns and the three sets which thus
are different for each run.

In the example used in this article, we have some 6200
patterns, each made up of a few past values of a number of
time series (for details of how the patterns are constructed,
see Section II-B below). We first build the test set by ran-
domly picking 1500 patterns with replacement. The pat-
terns used in this specific test set are then removed from the
pool. From the remaining patterns, we then randomly set
aside 1500 patterns as the validation set (these are picked
without replacement, and are also removed from the pool).
The remaining patterns then constitute the training set.?
For the results presented in the article, we do this 2523
times, training a network each time.

We use fully connected feedforward networks with one
hidden layer of tanh units and a linear output unit. How-
ever, in order to include variations over reasonable choices
for network and learning parameters, a number of network
characteristics are also drawn randomly at the beginning
of each run.® The cost function is the squared difference
between the network output and the target (expressed as
the log-transformed volume, detailed in the next section),
summed over all patterns in the training set. Most results
are given in terms of (1 — R?), i.e., one minus the squared
correlation coefficient between forecast and target.

B. Data Set

We use daily data from the New York Stock Ex-
change (NYSE) from December 3rd, 1962, through Septem-
ber 16th, 1987, corresponding to 6230 days.* Our forecast-
ing goal is daily total trading volume, shown in Fig. 1. We
believe that this series has two interesting features: First,
while many articles have tried neural network approaches
to forecasting prices, few have attempted forecasting trad-
ing volume. Second, volume differs from many other fi-
nancial series in that it contains more forecastable struc-
ture than typical price series. We use the daily measure
of aggregate turnover on the NYSE which is total volume

2There is no deep theoretical justification for drawing the test data
with replacement, and the training and validation set effectively with-
out replacement. Our motivation was to stick to the standard rule of
sampling with replacement for the test set. For the training and val-
idation sets, we did not allow for repeated patterns since we wanted
the linear fit comparison to be estimated on each non-test data point
with even weight, and wanted to use identical sets for the net and the
linear fit in each run.

3In detail, the network architecture is chosen uniformiy over 2 to
6 hidden units. The learning rate is chosen uniformly over [1,20] x
10~4, no momentum. The weight-range w of the initial weights is
drawn between [0.25,2.5]. The individual weights are then initialized
randomly from a uniform distribution over [w/%, —w/i] where ¢ is the
number of connections coming into a unit (“fan-in”). The block-size
(how many patterns are presented until the weights are updated) is
drawn uniformly from [20,180]. Al inputs are scaled to have zero
mean and unit variance as estimated over the entire data set. No
significant correlation was found between performance and any of
these choices.

4A “super test set” (the period from September 17th through Octo-
ber 19th, 1987 that contains the 1987 crash) is set aside for some final
out-of-sample forecasting experiments, described in Section III-D.
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Fig. 1. (a) The level of the Dow Jones Industrial Average from

December 1962 - October 1987. (b) The raw trading volume (ag-
gregate turnover) on the NYSE. The nonstationarity is evident;
this is a semi-logarithmic plot. (c) The series v that we use as
target: it is obtained by taking the logarithm of the raw value
and dividing it by the mean of the last 100 trading days.

divided by shares outstanding, or the fraction of shares
traded that day. This series is not stationary, Fig. 1 (b).
We “detrend” it by dividing by a 100-day moving average of
past turnover. In other words, we compare the volume to-
day with the average volume over the last 100 trading days.
The distribution of this series is still very skewed. We then
take the logarithm to obtain a less skewed distribution.®
We refer to this transformed series as v;. This target series
is shown in Fig. 1 (c).

Beside three lagged values of v (a typical autoregressive
or AR model), we use three other sets of variables, making
it an exogenous or ARX model. We use first differences
of the logarithm of the level of the Dow Jones Industrials
Index as a measure of relative stock returns, r¢. Further-
more, volume movements are connected to stock return
movements in interesting ways (Karpov, 1987; LeBaron,
1992a; Gallant et al., 1993). One of these features is that
volume is related to stock price volatility, sometimes ap-
proximated by the absolute magnitude of daily price move-
ments. Furthermore, volume tends to be higher in rising
markets. For these reasons we chose several lagged returns
and volume variables as predictors. The predictor vector
(i.e., the 12 values presented to the network as inputs for
each pattern) is given by

{ Vi—12,3 5 Tt-1,23 5 [Te-1,2,3 10%(‘7?—1,2,3) } .

5Normalizing with the 250-day mean (of the last trading year) did
not remove quite enough of the nonstationarity. Note also that we
are using the normalized level of the volume, not a difference ver-
sion that would correspond to the change in volume. Apart from
correcting somewhat for the skewed distribution, the logarithm can
be interpreted as emphasizing small values of the volume more than
large ones, and, alternatively, as facilitating product interactions be-
tween lagged values of the volume, since the inputs are added in the
argument of the hidden units, and adding logarithms corresponds to
multiplying the original values.

Here, o; is an estimate of a volatility. It is defined recur-
sively as
ol=Bol +(1-B)r; withf=09 .

This represents an exponential filter of the squared re-
turns. This can be interpreted in physical terms as a re-
laxator: A shock in r? decays in —1/log B = 9.5 days to
1/e = 0.37 times its initial value.5 We initialize o3 to the
unconditional variance of the series. The choice of the ex-
ponentially smoothed squared returns is motivated by the
similarity to variance estimates from autoregressive condi-
tional heteroskedastic (ARCH) models often used in finan-
cial time series (Bollerslev et al., 1990; Bollerslev et al.,
1995).

Summarizing, we use the following inputs for our model:

o Three lags of the past trading volume, v;_1,2,3. They
are normalized by the 100-day moving average (but
not differenced), see Fig. 1 (¢). Their one-day autocor-
relation after normalization is 0.66. (Without our nor-
malization, i.e., taking the raw volume from Fig. 1 (b),
the overall shift in level over the two decades is respon-
sible for an autocorrelation of 0.95.)

« Three lags each of the relative returns, r;—1,2,3. Their
one-day autocorrelation is small (0.135), and disap-
pears for two or more lags, as discussed in LeBaron
(1992). '

« Two estimates of their volatilities, with three lags each:

— Absolute value of the relative returns,|r;—1 2,3/ Their
autocorrelation coefficients are dropping off very
slowly, and have values for the first 10 lags around
0.16, computed after subtracting the mean of |r;|.”

— Logarithm of the exponentially smoothed squared re-
turns, log(o7_; 23). Their one-day autocorrelation
is 0.975. It drops off very slowly, primarily due to
the smoothing (each value re-enters at the next time
step attenuated by 8 = 0.9), and secondarily due to
the already existing autocorrelation of the driving
process of 7.

We refer to each of these 12-dimensional predictor vec-
tors with the associated 1-dimensional target value as a pat-
tern. The correlation coefficients were computed through
Oct 19, 1987, i.e., excluding the effect the day of the 1987
crash would have. As shown, some of the input dimensions
are highly correlated. Despite this high correlation that
gives an effective overlap of the patterns in the three sets,
we will see in the next section that the performance varies

6 An equivalent box-cart moving average would average the squared
returns over 19 days. We chose the exponential average since it does
not exhibit the box cart’s shadows, i.e., the effect that large shocks
show up again with the opposite sign once they drop off the left side
of the window.

"The 1/e decay time of the corresponding AR process is about
half a time step. This does not characterize the time scale of the
underlying process well: the coefficient is severely underestimated due
to the presence of noise in the inputs (“errors-in-variables”, see Fuller
(1987) and Carroll et al. (1995)). Fitting a state space model with
full dynamics to the series {|rs]— < |r¢| >} gives an autoregressive
coefficient for the dynamics of the state of 0.9915, corresponding to
an 1/e decay time of approximately 5 months (117 trading days).
For more details of this method and their interpretation for modeling
volatilities see Timmer & Weigend (1997).
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a lot for different random samples out of these overlapping
patterns.

III. EMPIRICAL RESULTS
A. Learning Curves and Querfitting

Fig. 2 shows the set of learning curves® for a typical
run, for the three sets, both expressed as one minus the
correlation coefficient squared, (1 — R?), and as the mean
squared error divided by the overall variance of the target,
NMSE. Differences between these two reasonable perfor-
mance measures occur when the mean and the variances are
not estimated correctly. Whereas the correlation coefficient
corrects for these differences (by subtracting the means
and dividing by the standard deviations), the squared error
does not, and is thus higher than (1 — R?).

Learning curves. lines: training set, x: cross-validation set, o: test set.
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Fig. 2. Learning curves of one specific network on one specific split.
They show the performance vs. the number of backpropagation
iterations. There are three pairs of curves. The first pair (mono-
tonically decreasing) gives the performance on the training set,
the second pair (denoted by “x”) on the validation set, and the
third pair (“o”) on the test set. The three solid lines plot the
(1 — R?) measure; the three dash-dotted lines give the normal-
ized mean squared error (NMSE). The straight line indicates the
test error of a linear model estimated on the union of the training
set and the validation set.

The learning curves in Fig. 2 show performance vs. the
number of backpropagation iterations. There is a clear in-
crease of validation and test errors after passing through
minima, usually called overtraining or overfitting. At some
stage (around epoch 800 in this specific run which hap-
pened to have a very small learning rate) the network ex-
tracts a feature of the training set that helps the test set,
but hurts the validation set. The minima of the validation
set and the test set do not occur at the same epoch. From
each of these sets of learning curves, only a single number

8We use the term learning curve to characterize the performance as
a function of the iterations of the algorithm. In a different context,
typically when an arbitrary number of training patterns can be gen-
erated, the term learning curve denotes performance as a function of
data set size.

is used for the subsequent analysis and comparisons in this
article: the performance value on the test set at that epoch
that has the minimum of the validation set.

B. Linear vs. Nonlinear Comparison

One of the most important goals of any exploration of a
nonlinear forecasting method is to demonstrate an improve-
ment over linear forecasts. For synthetic data, generated
from nonlinear noise-free systems, forecast improvements of
several orders of magnitude have been reported: consider
the celebrated logistic map which consists only of a second-
order component (quadratic term) without any first-order
(linear) component. It really should come as no surprise
that methods that allow for nonlinearities will vastly out-
perform the perfectly inadequate linear fit in cases when
there is no linear component.

We here focus on high-noise real world data where the
evaluation is much harder, and potential nonlinearities are
often masked by noise. In this case, great care needs to be
taken to evaluate the nonlinearity of the model: obtained
on a single split, depending on the split, a network can eas-
ily be a few percent better, but also a few percent worse
than the linear model. Thus, instead of just comparing
forecasts on one split and one out-of-sample time period,
we recommend bootstrapping and reporting the distribu-
tion of forecast performance for both the network and lin-
ear forecasts. This allows a more meaningful statistical
comparison between linear and neural network models.

Solid: neural nets; dashes: linear (2523 resamplings each). Dots: 697 nets (1 sampling).
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Fig. 3. Histograms of (1 — R?) forecast performance. The solid
line shows the distribution of the networks, the dashed lines of
linear model, both estimated on 2523 different resamplings of the
available data. The dotted line takes just one split of the data
and describes the distribution of 697 networks. The fact that the
width of the dotted histogram is clearly smaller than the width
of the other two indicates that the randomness in the splitting
of the data generates more variability than the randomness in
network initialization does.

In this comparison we fit for each split a linear model to
exactly the same patterns (inputs and targets) used for the
network. Parameters are estimated using the union of the
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same training and validation set, and (1 — R?) is estimated
over the same test set from each bootstrap resampling.®

The empirical density from 2523 bootstrap resamplings
of the forecast performance is shown in Fig. 3. The solid
line displays the performance of the networks, and the
dashes that of the linear models. It is clear from this pic-
ture that distinguishing between the two forecasts is going
to be difficult, if possible at all.

Neural net performance vs linear performance (ratio). [N=2523, mean=0.996, std=0.016]
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Fig. 4. Histogram of the ratio of (1 — R?) network performance di-
vided by (1 — R?)-linear performance for 2523 resamplings. Each

entry in this histogram corresponds to the performance ratio of
one network and one linear model trained on one specific split.

To focus on the comparison, Fig. 4 shows a histogram
of the run-by-run ratio of the two forecast performance
measures. This ratio is estimated for each of the bootstrap
samples and recorded. If the networks were consistently
outperforming the linear models then this ratio would be
less than unity. However, this histogram shows that it is
not very likely that the network will do better than a linear
model in most cases.!®

Another perspective on the correlation of forecast perfor-
mance between neural networks and linear models is given
in Fig. 5, a scatter plot of the performance of the nonlinear
vs. the nonlinear model,

{ @ R3),(1- RN}

90ne referee suggested a comparison with an autoregressive mov-
ing average (ARMA) models instead of the exogenous autoregressive
linear (ARX) we use. ARMA models are indeed more general linear
models than AR models. However, for the pairs-bootstrap study pre-
sented here, where resampling destroys the sequence of the patterns,
it is not possible to feed back errors (the MA part). An ARMA model
cannot be used in combination with the pairs-bootstrap; ARX is thus
the appropriate linear model class to compare to.

10The average ratio in Fig. 4 is 0.996£0.016. On the one hand, this
is significantly different from 1, with a t-statistic of 12.6, indicating
a significant, but small improvement in overall forecast performance.
On the other hand, when we compare the forecast performance using
squared forecast errors, we find that the average ratio (over the same
2523 runs) is larger than unity, 1.003%0.020 (the confidence intervals
are statistical errors of one standard deviation). This leads us to the
conclusion that there is no relevant difference between the nets and
the linear fits.

One point is entered for each bootstrap sample, i. If the
networks are picking up much of the same structure as the
linear forecasts, we will see a strong correlation between the
two. This is indeed the case in Fig. 5 where the correlation
between forecast errors is 0.936.

To summarize this section: When we embarked on this
experiment, we were hoping for simple clean evidence for
nonlinear structure in the volume of the NYSE, of high in-
terest for economists. What we found instead is that pos-
sible underlying nonlinearities are not easily discovered—
using a model class celebrated for its ability to express any
nonlinear function (feedforward networks with tanh hidden
units with a squared error cost function) did not reveal such
structure. Since this article focuses on the variation due to
different splitting of the data, we did not use explore alter-
natives to early stopping that avoid the bias towards a lin-
ear solution, such as weight-elimination or pruning; those
are interesting experiments and the data is available from
the authors’ web sites. Furthermore, we did not use com-
puter generated nonlinear data, since generating an arbi-
trarily large number of noise-free data points of an ergodic
system will typically (for any split of the data) give very
close neighbors between the different sets. This does not
constitute a serious test for the real-world problem of noisy
data of finite record length, perhaps slightly nonlinear, that
we typically find in economics, finance and business.

C. Variability Over Random Networks

Our procedure randomizes both over data samples and
over network architectures and initial parameters. An im-
portant question is: How much of the variability is due
to the data set resampling, and how much is due to the
network parameters? Viewed from a different angle: for
a given split, how much model overfitting would connec-
tionists be likely to engage in were they to optimize their
network architecture etc. for that split? If great gains
were possible by tinkering with network parameters for
each split, we should observe a lot of variability in forecast
performance over randomly initialized networks on a given
data set split. However, the dotted line in Fig. 3 shows
a representative density for 697 randomly drawn nets, all
trained and tested using the same training, validation, and
test sets. The answer to the question is: The variations of
the forecasts due to changes in network structure are small
relative to the variations due to sample splitting.

D. Probability Density of the Forecasts

Now that we have an entire ensemble of neural network
predictors, we can investigate how all these networks can
give us a fresh view on the old idea of combining forecasts
by looking at the scale of the variations compared to the
noise inherent in the problem. We use each of the networks
to make predictions on a sample that had been set aside
throughout (i.e., never used during training, validating or
testing). The time period of this sample starts immedi-
ately after the time period considered so far, i.e., it starts
on September 17th, 1987, and includes the crash of Octo-
ber 19th, 1987, a day with unusually large price movement
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Scatter plot: one point per run (resampling)
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Fig. 5. Scatter plot of the prediction errors. For each of the 2523
runs (i.e., different splits of the data) one point is entered into
this scatter plot. Its location is determined by the performance
of the network vs. the linear model. Note that the point cloud is
much more stretched out along the 45-degree line than orthogonal
to it, again indicating that there is more variation due to the
randomness in data splits than the variation that results from
the randomness in the initial conditions.

and trading volume.

Fig. 6 displays, for each day, the density of all the net-
work predictions. They are single-step forecasts: the input
for tomorrow’s prediction contains today’s observed values.
The solid lines are the histograms of the individual raw
predictions; they have not been convolved with any added
uncertainties. The actual data points are marked with x.
(The data points for the stock market crash, October 19th
and 20th, 1989 are missing since they are off the scale.) A
few interesting features are contained in the figure. First,
we see that the forecasts in many cases are biased high or
low, indicating generally mediocre forecast performance.
(Explaining 50 percent of the variance of the data means
that there still remains 50 percent unexplained!) Second,
the fact that for many of the days the width of the distribu-
tion is quite small and quite far away from the actual value
suggests that even the smartest selection or combination
of forecasts cannot yield much improvement.!? Finally, we
can see how the models’ predictions begin to spread apart
as the period of the crash is reached. The main reason
for this spreading is that the inputs wander off into re-

11 The idea of combining of forecasts (Bates & Granger, 1969), based
on the idea that superposition helps to the degree that the errors are
uncorrelated, has recently reached the connectionist community, see
e.g., {Jacobs, 1995). This article presents, on a practical example,
the limitations of averaging for noisy data: the empirical densities
show that averaging over all the splits we did (by taking the mean,
median or any convex, possibly even adaptive, combination of the
1843 individual models) will not improve the predictions dramatically.

gions where the network has never seen training points.
Regression neural networks do not spend any resources on
modeling the density of the inputs—moving away from re-
gion of interpolation to extrapolation manifests itself indi-
rectly through deteriorating performance. Thanks to the
benevolent nature of tanh hidden units, the output remains
bounded even for thus far unexplored regions.

IV. RELATION TO OTHER SOURCES OF UNCERTAINTY

Forecast uncertainty can come from many sources. We
focused on the uncertainty obtained from the specific splits,
that can be called splitting uncertainty. In the larger pic-
ture, its size is relatively small compared to all the noise
sources that contribute to the normalized squared error of
about 50 per cent, or a correlation coefficient of about

R=+/{1-05)=07 .

We here briefly describe the effect of other sources of
uncertainty:'2

» Noisy targets. An appropriately trained network out-
puts expected values. Gradient descent in a squared
error cost function can be interpreted in a maximum
likelihood framework as the observed values being nor-
mal distributed around the predicted values with con-
stant noise level. This assumption can be relaxed, first
by allowing a Gaussian with locally varying widths,
then by modeling the output distribution with poten-
tially multimodal functions:

— Heteroskedasticity (“local error bars”). Nix &
Weigend (1995) described a method to train a net-
work with two output units, the first giving the pre-
diction, the second the error bar. Those two num-
bers, both functions of the input space, parametrize
a Gaussian and can be used for unimodal densi-
ties. This method is more flexible than the constant
variance assumption, but not appropriate for multi-
modal output densities.

— The assumption of a single Gaussian can be gener-
alized to a mixture of Gaussians that allow predic-
tion of more general densities. Jacobs et al. (1991)
introduced Gaussian mixture models to the connec-
tionist community, and Weigend et al. (1995) ap-
plied them to time series prediction. As an alter-
native, rather than using this mixture of Gaussians
with varying centers, Weigend & Srivastava (1995)
introduced a fuzzy-logic like superposition of tent-
functions at fixed centers to model potentially mul-
timodal densities. )

» Noisy inputs (observational noise). This important
noise source in autoregression of noisy time series is
well known in statistics and econometrics (see Sec-
tion II-B) but less well known in the connectionist
community (Weigend et al., 1996). If the levels of the
noise for each input is known, the effect can always be

120ther sources, important in nonlinear dynamical systems with
low noise, such as the divergence of nearby trajectories, are less im-
portant in the present case of noisy financial data.

P
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x: data points

2.5~

1.5

1
o.s- £ f: i3
-0.5F 3 H
-1H E
x

-1.5

ol

x

Volume (zere mean and unit variance, height arbitary units)

-2 -

5 10 15 20
Days after the end of train / val / test. (Day 1 = Sep 17, 1987; Day 23 = Oct 19, 1987)

Fig. 6. One-day ahead densities for the days on the “super-test-set”. The October 1987 stock market crash occurred on day 23 on this scale;

the value for the volume went off scale.

emulated with a Monte Carlo simulation of forward
passes with slightly different values for the inputs in
order to build a density reflecting input fluctuations.

o Parameter noise (uncertainty in the weights). From
a Bayesian perspective, model parameters are never
known exactly but also have some uncertainty that
translates into an uncertainty of the prediction (Bun-
tine & Weigend, 1991; MacKay, 1992; Neal, 1996).
While an analytic approximation is only available for
simple cases, it is always possible to obtain a distribu-
tion by generating forward passes through networks
with slightly different weight values.

« Regions of low input density (extrapolation). At the
end of the Section III-D we discussed the uncertainty
for the 1987 crash stemming from too few patterns
in the vicinity of the pattern for which the prediction
is to be made. For the data set used in this paper
this is not an important source here since adjacent
input patterns are highly correlated, implying that in
most cases the network will have encountered nearby
neighbors in the training set. This yields, however, to
an overly optimistic interpretation of the performance.

The specific values of the prediction performance should
not be overinterpreted. As typically done in cross-sectional
bootstraps, we pick the validation and test patterns inter-
spersed with the training data in order to obtain an indica-
tion of the variation of the subsample selection. Care has
to be taken, however, in interpreting the results as accu-
rate estimates of the generalization performance for truly
future data. If there is a strong overlap from one pattern
to the next (imagine a problem where all inputs are highly
smoothed, like the exponentially filtered volatility estimate
we use, or, even without smoothing, if the data is sampled
with a frequency a lot faster than the dynamics of the sys-
tem!) the chances are high that for a given test pattern,
there will be very similar training patterns adjacent in time.
In this case, more accurate estimates of the performance on
future data might be obtained by bootstrapping blocks of

data (Kunsch, 1989; Liu & Singh, 1992). Note, however,
that these blocks are still taken from the entire period.
So, if the dynamics is truly nonstationarity, this blocks-
bootstrapping will still give overly optimistic results. To
avoid fooling oneself on financial data, we strongly recom-
mend using only data for testing that arrived after the end
of the training and validation period (whether these two
are interspersed, blocked, or sequential).

V. CONCLUSIONS

This article demonstrated the usefulness of a pairs boot-
strap approach to generating and testing time series fore-
casts. We then applied the procedure to trading volume.
Contrary to our expectation, no improvement over linear
models could be obtained with a standard network trained
with backpropagation and regularized by early stopping.
This does not rule out the possibility of forecast improve-
ments using additional forecast variables, or by using prun-
ing and weight-elimination techniques. '

The simulations gave us important insights into the vari-
ability of forecast performance over changes in subsamples
and network structure. For our example, most of the vari-
ability in forecast performance was clearly coming from
sample variation and not from model variation. This tells
us that for this series there is probably little hope in fine
tuning the networks we used. This is an example of an
application where we feel that procedures such as boot-
strapping are extremely useful in getting a clearer picture
of what might be real and what is noise.
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